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How is it done today?

Detecting ceasefire violations

= Why did you do that?

= Why not something else?
= When do you succeed?

= When do you fail?

= When can | trust you?

= How do | correct an error?

training data
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What are we trying to do?

Detecting ceasefire violations

input

= | understand why

= | understand why not

= | know when you’ll succeed
= | know when you’ll fail

= | know when to trust you

= | know why you erred

training data

New
learning
process
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This is a violation:

These events occur
before tweet reports

explainable
model

explanation user
interface
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Challenge problems

Data analytics Autonomy

Getty Images US Army

Explains recommendations to an analyst Explains actions to an operator

DARPA



Goal: Performance and explainability

Create a suite of machine learning
techniques that

= Produce more explainable models, while
maintaining a high level of learning performance

= Enable human users to understand,
appropriately trust, and effectively manage the
emerging generation of Al systems

Learning performance

- Distribution Statement A. Approved for public release. Distribution unlimited.

O O
® ® tomorrow
O
today o
O
O
Explainability



Randomized Input Sampling for Explanation (RISE)

Neural network RISE Explanation for solar RISE Explanation for

prediction farm shopping mall
solar farm: 63% shopping mall: 23%

FMoW dataset

Increasing importance

Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized Input Sampling for Explanation of
Black-box Models. British Machine Vision Conference (BMVC), 2018.
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Network dissection - AlexNet layers for recognizing places
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Unit 14 (water) David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, and Antonio Torralba.

GAN Dissection: Visualizing and Understanding Generative Adversarial Networks. arXiv preprint arxiv 1811.10597, 2018.
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Explaining image classifiers by counterfactual generation

Input image Foreground retained Foreground removed
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Spatial attention Spatial attention Spatial attention

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining Image SRI International
DA’RPA Classifiers by Adaptive Dropout and Generative In-filling. CoRR abs/1807.08024 (2018). University of Toronto
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End-to-end learning of differentiable physics

github.com

Dynamics
Model
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Estimator

== Physics # DeepRL
400 - = Deep RL Physics-based M algorithm
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Actions

Filipe de A. Belbute-Peres, Kevin A. Smith, Kelsey R. Allen, Joshua B. Tenenbaum, and J. Zico Kolter. End-to-
End Differentiable Physics for Learning and Control. NeurlPS 2018: 7178-7189.
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Learning finite state representations of recurrent policy networks

comicbook.com www.atarimania.com www.retrogames.cz

Quantized Bottleneck Networks (QBNs)

Anurag Koul, Sam Greydanus, and Alan Fern. Learning Finite State Representations of Recurrent Policy
Networks. International Conference on Learning Representations (ICLR), 2019.
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Textual explanations and visualizing causal attention

w acceleration k!) descriptions
+ vehicle controller explanation generator +
course explanations

Visual saliency detection and

Input image stream
X 1 causality check
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Jinkyu Kim and John Canny. Interpretable Learning for
Self-Driving Cars by Visualizing Causal Attention. In
Proceedings of IEEE International Conference on
Computer Vision (ICCV), 2017.

Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John
Canny, and Zeynep Akata. Textual Explanations for
Self-Driving Vehicles. In Proceedings of European
Conference on Computer Vision (ECCV), 2018.

= University of California, Berkeley
DARPA University of Amsterdam
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Textual explanations and visualizing causal attention

‘ﬂ( acceleration k!) descriptions
+ vehicle controller ]—>[ explanation generator +

course explanations
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Input image stream Attention heat map Clustering analysis Visual saliency detection and
causality check

The car slows down +
because it's making a Ie.ft turn Jinkyu Kim and John Canny. Interpretable Learning for

Self-Driving Cars by Visualizing Causal Attention. In
Proceedings of IEEE International Conference on
Computer Vision (ICCV), 2017.

Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John
Canny, and Zeynep Akata. Textual Explanations for
Self-Driving Vehicles. In Proceedings of European
Conference on Computer Vision (ECCV), 2018.
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What we've learned

" Promising approaches to explainability

Both

Autonomy

Analytics

UC Berkeley
Charles River
UCLA

Oregon State
PARC

CMU

SRI International
Raytheon BBN
UT Dallas

Texas A&M

Rutgers

Deep Learning

Causal Modeling
Stochastic And-Or-Graphs
Deep Adaptive Programs
Cognitive Modeling
Explainable RL (XRL)
Deep Learning

Deep Learning
Probabilistic Logic

Mimic Learning

Explanation by Example

" |nitial results from measuring
explanation effectiveness

— Users preferred explanations
— Explanations engendered appropriate trust

— Explanations sometimes improved mental
model predictions

— Incorrect explanations negatively impacted
these measures
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