Explainable AI

Matt Turek, I2O

Presenter: John Reeder, Naval Information Warfare Center

How is it done today?

What are we trying to do?

Challenge problems

Data analytics

Getty Images

Explains recommendations to an analyst

Autonomy

US Army

Explains actions to an operator

Goal: Performance and explainability

Create a suite of machine learning techniques that

- Produce more explainable models, while maintaining a high level of learning performance
- Enable human users to understand, appropriately trust, and effectively manage the emerging generation of AI systems

Randomized Input Sampling for Explanation (RISE)

Neural network prediction

solar farm: 63%, shopping mall: 23%

FMoW dataset

RISE Explanation for solar farm

solar farm: 63%

RISE Explanation for shopping mall shopping mall: 23%

Increasing importance

Vitali Petsiuk, Abir Das, and Kate Saenko. *RISE: Randomized Input Sampling for Explanation of Black-box Models*. British Machine Vision Conference (BMVC), 2018.

University of California, Berkeley Boston University

Network dissection - AlexNet layers for recognizing places

Unit 37 (banded)

Unit 20 (grass)

Unit 109 (tree)

Unit 14 (water)

DARPA

conv1

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, and Antonio Torralba. *GAN Dissection: Visualizing and Understanding Generative Adversarial Networks*. arXiv preprint arxiv 1811.10597, 2018.

Raytheon BBN *MIT*

Explaining image classifiers by counterfactual generation

Input image

Spatial attention

Foreground retained

Spatial attention

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. *Explaining Image Classifiers by Adaptive Dropout and Generative In-filling*. CoRR abs/1807.08024 (2018). Distribution Statement A. Approved for public release. Distribution unlimited.

SRI International University of Toronto

Foreground removed

Spatial attention

End-to-end learning of differentiable physics

Planner

Controller

Filipe de A. Belbute-Peres, Kevin A. Smith, Kelsey R. Allen, Joshua B. Tenenbaum, and J. Zico Kolter. *End-to-End Differentiable Physics for Learning and Control*. NeurIPS 2018: 7178-7189.

Sensor

Inputs

State

Estimator

Carnegie Mellon University

Distribution Statement A. Approved for public release. Distribution unlimited.

Actions

Learning finite state representations of recurrent policy networks

Anurag Koul, Sam Greydanus, and Alan Fern. *Learning Finite State Representations of Recurrent Policy Networks*. International Conference on Learning Representations (ICLR), 2019.

Oregon State University

Textual explanations and visualizing causal attention

Distribution Statement A. Approved for public release. Distribution unlimited.

University of Amsterdam

Textual explanations and visualizing causal attention

The car slows down + because it's making a left turn

Jinkyu Kim and John Canny. *Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention*. In Proceedings of IEEE International Conference on Computer Vision (ICCV), 2017.

Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John Canny, and Zeynep Akata. *Textual Explanations for Self-Driving Vehicles*. In Proceedings of European Conference on Computer Vision (ECCV), 2018.

> University of California, Berkeley University of Amsterdam

What we've learned

Promising approaches to explainability

СР	Performer	Explainable Model
Both	UC Berkeley	Deep Learning
	Charles River	Causal Modeling
	UCLA	Stochastic And-Or-Graphs
Autonomy	Oregon State	Deep Adaptive Programs
	PARC	Cognitive Modeling
	CMU	Explainable RL (XRL)
Analytics	SRI International	Deep Learning
	Raytheon BBN	Deep Learning
	UT Dallas	Probabilistic Logic
	Texas A&M	Mimic Learning
	Rutgers	Explanation by Example

- Initial results from measuring explanation effectiveness
 - Users preferred explanations
 - Explanations engendered appropriate trust
 - Explanations sometimes improved mental model predictions
 - Incorrect explanations negatively impacted these measures

Thank You