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Artificial Intelligence technology is rapidly moving out of the research lab and into products, with the potential
to fundamentally transform many facets of business and everyday life. This paper provides a brief overview of Al,
including what it is and what it isn’t, when it tends to work well, and when it tends to fail. We then specifically review

how it could impact the manufacturing sector in particular.

1 INTRODUCTION

After six decades of research, Artificial Intelligence is finally moving out of the lab and into the real world.
Computers now out-perform humans on a range of tasks, from everyday games like Chess and Jeopardy [14,
27] to advanced security systems that recognize faces [29] or read lips [11]. Some Al applications are already
commonplace — e.g., smartphones that react to voice commands — while others loom large on the horizon —
e.g., self-driving vehicles that could forever transform transportation. This excitement has come with hype
and many mysteries: why can Al defeat every human Chessmaster that has ever lived, but a state-of-the-art

Al-powered mall security robot can clumsily drown itself in a fountain because it didn’t see it [15]?

2 WHATIS AI?

Artificial Intelligence is surprisingly difficult: Dr. Herbert Simon, Nobel and Turing Prize laureate, is reported
to have predicted in 1960 that “machines will be capable, within twenty years, of doing any work that a
man can do” [19] — a goal that is still elusive some 60 years later. The original dream of Al was to replicate
the way that humans think, so early Al researchers wrote programs that encoded rules for carrying out
tasks and making decisions. This turned out to be impractical: even the simplest of everyday activities, like
going for a walk around the mall, involves making innumerable choices, observations, and inferences that
seem trivial to us but are extremely difficult to express algorithmically. (Even just deciding whether the
path ahead is solid remains a challenge, as the aforementioned security robot learned). Today’s work in Al
aims for the more modest goal of creating systems that can perform tasks that seem to require human-level
intelligence. Thus modern Al generally tries to reproduce what humans can do, not how they do it, through

a variety of technologies and approaches.

3 MACHINE LEARNING

Instead of writing programs that explicitly instruct a computer how to carry out a task, many Al systems
use machine learning. Although often described in grandiose terms of replicating humans’ abilities to learn,
in practice machine learning is simply about finding patterns in data, and then using those patterns to make
predictions about future data. Consider the simple example of a robot learning to calculate the circumference
of a circle from its radius. To do this, it collects “training data” by drawing circles of different radii, measuring
the circumferences with a ruler, and then finding a mathematical relationship between the two. Many
possible relationships fit the training data, as shown in Figure 1, each making different predictions about

unseen data points — some even predict that the circumference can be negative! A human learner might
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Fig. 1. A simple example of the challenges of fitting a mathematical model to observed training data, in order to
describe the relationship between two variables (x and y axes). The same four data points in (a) can be fit with
numerous possible models of different shapes and complexities, as shown in plots (b) through (e).

use intuition to choose between them (e.g., discarding models that predict negative circumferences), but
algorithms do not have this “common sense.” This means that our robot learner may perform very well on
its own “training data,” but fail spectacularly when it makes predictions about new circles.

Real applications of machine learning involve data that is much more complicated; for face recognition,
for example, the data points are not single numbers but images encoded as vectors of millions of numbers.
Nevertheless, the basic idea is the same — fitting models to training data. Just like the robot above, machine
learning’s success is at the mercy of its training data. (This is why face recognition works best on white
men [7]: the face training datasets are often of Al researchers themselves, and thus reflect unfortunate
biases of STEM demographics.) Ideally, the training set would be large enough to include every possible
scenario. In most interesting real-world problems, however, observing all possible scenarios is difficult
or impossible: in driving, for example, we regularly encounter events that are individually rare: a flooded
roadway, a child chasing a ball into the street, a mattress flying off of a truck. People make reasonable (if
not perfect) decisions even in scenarios they have never encountered before. A major remaining challenge
for Al is to build systems that can similarly be trusted to “generalize” beyond the specific training examples

that they have seen.

4 WHAT IS THE STATE OF THE ART?

Despite the limitations, Al is still a powerful tool because it turns out that pattern-finding on vast datasets can
solve many problems that seem to require intelligence. For example, in 2016 a computer finally beat a human
champion in Go, a board game so complex that it was thought to require human-level intelligence [26, 28].
But the algorithm solved it in a different way, by playing and finding patterns in nearly 20 million games
— many thousands of times more than any human could play. Al’s successes are not limited to games, of

course. Figure 2 shows examples of Al recognizing specific species of animals in images, from among nearly
2



Fig. 2. Sample recognition results from [30], in which the system locates and identifies specific species of animals
from among some 3,000 possible classes.

Question: What color is illuminated on the traffic light? =~ What is the man holding? What color is his tie? What sport is shown?
Answer: phone black frisbee

&

Question: How many oranges are on pedestals? How many zebras? What type of reception is being attended? What color are the safety cones?
Answer: 2 2 cake yellow

Fig. 3. Sample results of automatic question answering, from [3, 5].

3,000 possibilities; its accuracy of about 60%, while not perfect, is probably far above that of the average
person [30]. Figure 3 shows sample outputs from a system that can answer questions about photos [3, 5, 32],
which requires Al to solve multiple problems including understanding a question, recognizing photo content,
and producing a correct answer.

These examples all use machine learning, and thus depend on fitting mathematical models in millions of
images provided as training data. But because these models are not perfect and do not operate the same
way that people do, the results they produce can be perplexing or even nonsensical. The second row of
Figure 3, for example, shows visual questions that were incorrectly — and largely inexplicably — answered
by the algorithm. Figure 4 shows some examples [20] of pairs of images that look nearly identical but are
classified very differently by the computer: just like how some of the circle models would predict negative
circumferences despite fitting the training data, the model found here correctly classifies many images
but fails on images that are only slightly different. Unfortunately, these misclassifications mean that Al
systems can be easily fooled: pranksters could modify the appearance of road signs to make them invisible

to autonomous vehicles (Figure 5), for example.
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Fig. 4. Sample adversarial examples from [20]. The first row shows images and the object that the algorithm recognizes.
The second row shows the same images corrupted with noise that is nearly imperceptible, but nevertheless causes
the classifier to recognize the wrong object.

Fig. 5. Graffiti patterns that confuse an autonomous car’s sign classification system, causing it to recognize the
wrong type of sign, from [12].

5 WHEN DOES Al WORK WELL?

Given its imperfections and limitations, deploying Al in the real world must be done carefully. AT works
well in applications with very large amounts of high-quality data, and in applications that are resilient
to potential errors, typically because (1) a human is “in the loop” to double-check the AT’s decisions and
intervene if needed, (2) the context or environment is constrained, and/or (3) the consequences of failure
are minimal. Board games like Go are perfect for Al because large training datasets are available (the
computer can generate many games by just playing against itself), consequences of failure are low, and
the environment is constrained by the rules of the game. Autonomous driving, on the other hand, is much
more difficult, which explains why many companies are targeting limited scenarios such as requiring a
human to have their hands on the wheel to override the system if needed, or working only in controlled
scenarios such as Interstate highways.

While computers cannot yet surpass human intelligence, they can outperform humans in sheer speed of
calculations and ability to search vast amounts of information. They can also be programmed to perform
the same task over and over again, impartially and without fatigue. These properties enable new capabilities
that would simply not be possible for humans to do alone. For example, Al technology can be used to
communicate with hundreds or even thousands of sensors and other devices at a time, collecting data and
making decisions in real-time. Such a network of small devices, or “Internet of Things,” can range in scale

from dozens of sensors in an automobile, to thousands of sensors in a manufacturing plant, to millions of
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senors in consumer products scattered around the world. These sensors can be collecting many different
types of information — video, audio, sensor readings, text, etc. Meanwhile, computers’ objective and fast
calculations let them quickly make quantifications that would not be possible by a human. For example,
instead of simply predicting that an important piece of equiment may soon fail based on sensor readings
and other data, Al algorithms could predict the probability of failure, and compare the expected cost of

repairing it once it fails versus the downtime cost of taking it off-line for predictive maintenance.

6 HOW CAN Al BE APPLIED IN MANUFACTURING?

Many manufacturing applications are well suited to these advantages of Al For example:

e Quality inspection: In the restricted environment of a manufacturing plant, computer vision can
perform many inspection tasks more quickly, accurately, and efficiently than a human. For example,
an aircraft engine manufacturer recently began applying computer vision to inspect turbofan blades
in 3d with micrometer precision [9]. The system checks several hundred properties of a blade in just
15 seconds, which has allowed the manufacturer to inspect every blade it manufactures instead of
just a random sample. Moreover, the system applies a consistent standard, eliminating variations
across different human inspectors. Automated inspection may also significantly improve efficiency
of consumer product manufacturing: an automated system adopted by a hot sauce maker checks
the placement of labels at a rate of over 1,000 per minute [10]. Many of these systems are custom-
designed for one particular inspection task and (unlike a human) are unable to be easily retrained.
Machine learning-based approaches may change this; machine learning pioneer Andrew Ng recently
announced landing.ai, a start-up which promises more flexible inspection systems.

e Optimizing supply chains: Al can be used to collect and monitor fine-grained data along the
supply chain, and then manage inventory, predict future demand, spot inefficiencies, etc. For example,
Walmart is testing indoor drones to monitor its warehouse inventories [2]. It also uses machine
learning to forecast product demand based on local weather, for example, and has discovered subtle
patterns that may not have occurred to a human forecaster (e.g., that steaks sell better than ground
beef when it is cloudy and windy) [21]. The algorithms are not able to explain why these patterns occur,
or even if they are reliable patterns or simply coincidences, but this is acceptable in this application:
the consequences of a few incorrect predictions are minor as long as the system improves efficiency
overall. (This is unlike, say, autonomous weapons where explaining why the system chose a particular
target would be crucial.)

e Fine-grained equipment monitoring and predictive maintenance: Al can monitor manufactur-
ing equipment at a very fine grain through hundreds of networked sensors, picking up on subtle
changes — e.g. greater than usual vibration, or slight changes in machine noise — that may indicate
impending failure. Mueller Industries, a manufacturer of industrial products, is testing such a system,
and already identified a problem with bearings on one of its machines that could have caused sig-
nificant downtime if it had not been discovered and repaired [8]. This technology has the potential
to move from “preventative maintenance” to “predictive maintenance,” avoiding machine downtime
both from machine failure and unnecessary preventative maintenance.
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e Advanced robotics: Robots have long been used in manufacturing, but typically must be custom-
built for one particular task, cannot be easily “retrained,” and are typically blind to their surroudings,
simply performing the same task over and over regardless of what (or who) might be in the way.
New technology is starting to allow robots to perceive human activities and safely collaborate with
them [18]. Other research is investigating robots that can automatically learn by imitating human
actions — which could dramatically reduce development costs — or that can learn on their own by
simply “practicing” a task over and over again until they succeed [13]. Most of this work is still in the
proof-of-concept stage, but the technology is advancing quickly.

e Generative design: Al can be used to simulate how a design would perform in the real world, without
physically building it, and then automatically “evolve” modifications until an optimal design is reached.
As just one example, Airbus reportedly used generative techniques to create aircraft parts that are
significantly lighter than those designed by humans [4].

e Augmenting human capabilities: Collaborating humans and Al can potentially perform better and
more efficiently than either individually. For example, Augmented Reality (AR) can enhance efficiency
by showing workers important information as they perform a task, and allowing them to see views
that would not otherwise be possible (e.g., infrared imaging to see in low light). One study reported a
34% improvement in productivity for a worker performing a wiring task when AR glasses were used
to guide the process [6].

e Transportation: Autonomous vehicles have the potential to revolutionize the world’s transportation
systems eventually, but numerous technical, social, legal, and ethical problems remain before they
will likely see widespread consumer use [17]. But autonomous vehicles in more restricted settings,
such as manufacturing floors, are already being deployed. Amazon reportedly uses tens of thousands
of robots to automatically move products in its warehouses [25], for example. And autonomous
long-haul trucking may arrive much sooner than autonomous consumer vehicles, since navigating the
restricted setting of Interstate highways is significantly easier than handling all possible roadways [24].

Semi-autonomous trucks with assistive safety features are already becoming commonplace.

7 WHAT IS THE ROAD AHEAD?

Although AI can outdo humans on some very specific tasks, humans still dramatically outperform in
practically all real-world tasks requiring intelligence [23]. Moreover, machine learning algorithms require
huge training sets, whereas humans can learn with very limited experience. Finally, while humans can offer
reasoning to support their conclusions, machine learning is a “black box” that typically cannot explain or
defend its answers. It may just be a matter of time before these limitations are solved, or they may be more
fundamental. Some believe that human learning is nothing more than a sophisticated version of model
fitting [1], while others believe that current Al techniques are inherently “wrong” and could never mimic
the complex reasoning that people do [16, 22, 31]. Regardless, Al is advancing rapidly, having achieved
milestones that seemed unreachable even a few years ago. Current Al technology can already be usefully
applied in many applications, particularly in the manufacturing sector, where data is copious, operating

environments are restricted, and trained humans can oversee the automatic systems.
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Beyond the technical challenges, Al also raises important legal, ethical, and public policy questions.
Al will have to make potentially life-or-death decisions — how should a self-driving car choose between
crashing itself and potentially killing its passengers, versus striking a child who has run into the road? To
what extent should the algorithms that make such choices be subject to government oversight? How do we
assign liability for when Al makes mistakes? How do we safeguard Al systems, to protect both the data
they collect and decisions they make from hackers and other adversaries? In general, what protections are

needed, if any, to ensure that Al does more good than harm?
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