
Artificial Intelligence and Manufacturing

DAVID J. CRANDALL, School of Informatics, Computing, and Engineering, Indiana University, USA

Artificial Intelligence technology is rapidly moving out of the research lab and into products, with the potential
to fundamentally transform many facets of business and everyday life. This paper provides a brief overview of AI,
including what it is and what it isn’t, when it tends to work well, and when it tends to fail. We then specifically review
how it could impact the manufacturing sector in particular.

1 INTRODUCTION

After six decades of research, Artificial Intelligence is finally moving out of the lab and into the real world.
Computers now out-perform humans on a range of tasks, from everyday games like Chess and Jeopardy [14,
27] to advanced security systems that recognize faces [29] or read lips [11]. Some AI applications are already
commonplace — e.g., smartphones that react to voice commands — while others loom large on the horizon —
e.g., self-driving vehicles that could forever transform transportation. This excitement has come with hype
and many mysteries: why can AI defeat every human Chessmaster that has ever lived, but a state-of-the-art
AI-powered mall security robot can clumsily drown itself in a fountain because it didn’t see it [15]?

2 WHAT IS AI?

Artificial Intelligence is surprisingly difficult: Dr. Herbert Simon, Nobel and Turing Prize laureate, is reported
to have predicted in 1960 that “machines will be capable, within twenty years, of doing any work that a
man can do” [19] — a goal that is still elusive some 60 years later. The original dream of AI was to replicate
the way that humans think, so early AI researchers wrote programs that encoded rules for carrying out
tasks and making decisions. This turned out to be impractical: even the simplest of everyday activities, like
going for a walk around the mall, involves making innumerable choices, observations, and inferences that
seem trivial to us but are extremely difficult to express algorithmically. (Even just deciding whether the
path ahead is solid remains a challenge, as the aforementioned security robot learned). Today’s work in AI
aims for the more modest goal of creating systems that can perform tasks that seem to require human-level
intelligence. Thus modern AI generally tries to reproduce what humans can do, not how they do it, through
a variety of technologies and approaches.

3 MACHINE LEARNING

Instead of writing programs that explicitly instruct a computer how to carry out a task, many AI systems
use machine learning. Although often described in grandiose terms of replicating humans’ abilities to learn,
in practice machine learning is simply about finding patterns in data, and then using those patterns to make
predictions about future data. Consider the simple example of a robot learning to calculate the circumference
of a circle from its radius. To do this, it collects “training data” by drawing circles of different radii, measuring
the circumferences with a ruler, and then finding a mathematical relationship between the two. Many
possible relationships fit the training data, as shown in Figure 1, each making different predictions about
unseen data points — some even predict that the circumference can be negative! A human learner might

1



(b) (c)

(a)
(d) (e)

Fig. 1. A simple example of the challenges of fitting a mathematical model to observed training data, in order to
describe the relationship between two variables (x and y axes). The same four data points in (a) can be fit with
numerous possible models of different shapes and complexities, as shown in plots (b) through (e).

use intuition to choose between them (e.g., discarding models that predict negative circumferences), but
algorithms do not have this “common sense.” This means that our robot learner may perform very well on
its own “training data,” but fail spectacularly when it makes predictions about new circles.
Real applications of machine learning involve data that is much more complicated; for face recognition,

for example, the data points are not single numbers but images encoded as vectors of millions of numbers.
Nevertheless, the basic idea is the same — fitting models to training data. Just like the robot above, machine
learning’s success is at the mercy of its training data. (This is why face recognition works best on white
men [7]: the face training datasets are often of AI researchers themselves, and thus reflect unfortunate
biases of STEM demographics.) Ideally, the training set would be large enough to include every possible
scenario. In most interesting real-world problems, however, observing all possible scenarios is difficult
or impossible: in driving, for example, we regularly encounter events that are individually rare: a flooded
roadway, a child chasing a ball into the street, a mattress flying off of a truck. People make reasonable (if
not perfect) decisions even in scenarios they have never encountered before. A major remaining challenge
for AI is to build systems that can similarly be trusted to “generalize” beyond the specific training examples
that they have seen.

4 WHAT IS THE STATE OF THE ART?

Despite the limitations, AI is still a powerful tool because it turns out that pattern-finding on vast datasets can
solve many problems that seem to require intelligence. For example, in 2016 a computer finally beat a human
champion in Go, a board game so complex that it was thought to require human-level intelligence [26, 28].
But the algorithm solved it in a different way, by playing and finding patterns in nearly 20 million games
— many thousands of times more than any human could play. AI’s successes are not limited to games, of
course. Figure 2 shows examples of AI recognizing specific species of animals in images, from among nearly
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Chaetodon lunula(1.00)

Chaetodon lunula(0.98)

Anaxyrus fowleri(0.95)

Pseudacris regilla(0.58)
Setophaga petechia(0.91)

Orcinus orca(0.99) Rabdotus dealbatus(0.92)
Sylvilagus audubonii(0.97)

Equus quagga(1.00)
Equus quagga(0.98)

Zalophus californianus(0.88)
Megaptera novaeangliae(0.74)

Hippodamia convergens(0.83)
Phalacrocorax auritus(0.54)

Figure 7. Sample detection results for the 2,854-class model that was evaluated across all validation images. Green boxes represent correct
species level detections, while reds are mistakes. The bottom row depicts some failure cases. We see that small objects pose a challenge
for classification, even when localized well.

5. Conclusions and Future Work

We present the iNat2017 dataset, in contrast to many ex-
isting computer vision datasets it is: 1) unbiased, in that
it was collected by non-computer vision researchers for a
well defined purpose, 2) more representative of real-world
challenges than previous datasets, 3) represents a long-tail
classification problem, and 4) is useful in conservation and
field biology. The introduction of iNat2017 enables us to
study two important questions in a real world setting: 1)
do long-tailed datasets present intrinsic challenges? and
2) do our computer vision systems exhibit transfer learning
from the well-represented categories to the least represented
ones? While our baseline classification and detection results
are encouraging, from our experiments we see that state-of-
the-art computer vision models have room to improve when
applied to large imbalanced datasets. Small efficient mod-
els designed for mobile applications and embedded devices
have even more room for improvement [11].

Unlike traditional, researcher-collected datasets, the
iNat2017 dataset has the opportunity to grow with the
iNaturalist community. Currently, every 1.7 hours another
species passes the 20 unique observer threshold, making it

available for inclusion in the dataset (already up to 12k as of
November 2017, up from 5k when we started work on the
dataset). Thus, the current challenges of the dataset (long
tail with sparse data) will only become more relevant.

In the future we plan to investigate additional annotations
such as sex and life stage attributes, habitat tags, and pixel
level labels for the four super-classes that were challenging
to annotate. We also plan to explore the “open-world prob-
lem” where the test set contains classes that were never seen
during training. This direction would encourage new error
measures that incorporate taxonomic rank [25, 47]. Finally,
we expect this dataset to be useful in studying how to teach
fine-grained visual categories to humans [34, 15], and plan
to experiment with models of human learning.
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Fig. 2. Sample recognition results from [30], in which the system locates and identifies specific species of animals
from among some 3,000 possible classes.

Question: What color is illuminated on the traffic light? Answer left: green. Answer right: red.

Question: What is the man holding? Answer left: phone. Answer right: controller.

Question: What color is his tie? Answer left: blue. Answer right: black.

Question: What sport is shown? Answer left: frisbee. Answer right: skateboarding.

Question: Is this the handlebar of a motorcycle? Answer left: yes. Answer right: no.

Figure 10. Further examples of successful visual question answering results, showing attended image regions.
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Question: What color is illuminated on the traffic light? What is the man holding? What color is his tie? What sport is shown?
Answer: red phone black frisbee

Question: What is the name of the realty company? Answer left: none. Answer right: none.

Question: What is the bus number? Answer left: 2. Answer right: 23.

Question: How many cones have reflective tape? Answer left: 2. Answer right: 1.

Question: How many oranges are on pedestals? Answer left: 2. Answer right: 2.

Figure 11. Examples of visual question answering (VQA) failure cases. Although our simple VQA model has limited reading and counting
capabilities, the attention maps are often correctly focused.

Figure 5: Histogram of percentage of images for which
model produces same answer for a given question and
its comparison with test accuracy. The cumulative plot
shows the % of questions for which model produces same
answer for atleast x % of images.

model (60% for the ATT model, 73% for the MCB
model) which is more than the respective average
accuracy on the entire VQA validation set (54.13%
for the CNN+LSTM model, 57.02% for the ATT
model, 60.36% for the MCB model). Thus, pro-
ducing the same response across images seems to be
statistically favorable. Fig. 6 shows examples where
the CNN+LSTM model predicts the same response
across images for a given question. The first row
shows examples where the model makes errors on
several images by predicting the same answer for all
images. The second row shows examples where the
model is always correct even if it predicts the same
answer across images. This is so because questions
such as “What covers the ground?” are asked for
an image in the VQA dataset only when ground is
covered with snow (because subjects were looking
at the image while asking questions about it). Thus,
this analysis exposes label biases in the dataset. La-
bel biases (in particular, for “yes/no” questions) have
also been reported in (Zhang et al., 2016).

4 Conclusion

We develop novel techniques to characterize the be-
havior of VQA models, as a first step towards under-
standing these models, meaningfully comparing the
strengths and weaknesses of different models, devel-
oping insights into their failure modes, and identify-
ing the most fruitful directions for progress. Our be-
havior analysis reveals that despite recent progress,
today’s VQA models are “myopic” (tend to fail on
sufficiently novel instances), often “jump to conclu-
sions” (converge on a predicted answer after ‘listen-
ing’ to just half the question), and are “stubborn”

Figure 6: Examples where the predicted answers do not
change across images for a given question. See supple-
mentary for more examples.

(do not change their answers across images), with
attention based models being less “stubborn” than
non-attention based models.

As a final thought, we note that the somewhat
pathological behaviors exposed in the paper are in
some sense “correct” given the model architectures
and the dataset being trained on. Ignoring optimiza-
tion error, the maximum-likelihood training objec-
tive is clearly intended to capture statistics of the
dataset. Our motive is simply to better understand
current generation models via their behaviors, and
use these observations to guide future choices – do
we need novel model classes? or dataset with dif-
ferent biases? etc. Finally, it should be clear that
our use of anthropomorphic adjectives such as “stub-
born”, “myopic” etc. is purely for pedagogical rea-
sons – to easily communicate our observations to our
readers. No claims are being made about today’s
VQA models being human-like.
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3.1 Generalization to novel instances

Do VQA models make mistakes because test in-
stances are too different from training ones? To an-
alyze the first type of novelty (the test QI pair is
novel), we measure the correlation between test ac-
curacy and distance of test QI pairs from its k near-
est neighbor (k-NN) training QI pairs. For each
test QI pair we find its k-NNs in the training set
and compute the average distance between the test
QI pair and its k-NNs. The k-NNs are computed
in the space of combined image + question embed-
ding (just before passing through FC layer) for all
the three models (using euclidean distance metric for
the CNN+LSTM model and cosine distance metric
for the ATT and MCB models).

The correlation between accuracy and average
distance is significant (-0.41 at k=504 for the
CNN+LSTM model and -0.42 at k=155 for the
ATT model). A high negative correlation value tells
that the model is less likely to predict correct an-
swers for test QI pairs which are not very similar
to training QI pairs, suggesting that the model is
not very good at generalizing to novel test QI pairs.
The correlation between accuracy and average dis-
tance is not significant for the MCB model (-0.14 at
k=16) suggesting that MCB is better at generalizing
to novel test QI pairs.

We also found that 67.5% of mistakes made by the
CNN+LSTM model can be successfully predicted
by checking distance of test QI pair from its k-NN
training QI pairs (66.7% for the ATT model, 55.08%
for the MCB model). Thus, this analysis not only
exposes a reason for mistakes made by VQA mod-
els, but also allows us to build human-like models
that can predict their own oncoming failures, and
potentially refuse to answer questions that are ‘too
different’ from ones seen in past.

To analyze the second type of novelty (the answer
required at test time is not familiar), we compute the
correlation between test accuracy and the average
distance of the test ground truth (GT) answer with
GT answers of its k-NN training QI pairs. The dis-
tance between answers is computed in the space of

4k=50 leads to highest correlation
5k=15 leads to highest correlation
6k=1 leads to highest correlation

Figure 1: Examples from test set where the
CNN+LSTM model makes mistakes and their cor-
responding nearest neighbor training instances. See
supplementary for more examples.

average Word2Vec (Mikolov et al., 2013) vectors of
answers. This correlation turns out to be quite high
(-0.62) for both CNN+LSTM and ATT models and
significant (-0.47) for the MCB model. A high neg-
ative correlation value tells that the model tends to
regurgitate answers seen during training.

These distance features are also good at pre-
dicting failures – 74.19% of failures can be pre-
dicted by checking distance of test GT answer
with GT answers of its k-NN training QI pairs for
CNN+LSTM model (75.41% for the ATT model,
70.17% for the MCB model). Note that unlike the
previous analysis, this analysis only explains fail-
ures but cannot be used to predict failures (since it
uses GT labels). See Fig. 1 for qualitative examples.

From Fig. 1 (row1) we can see that the test QI
pair is semantically quite different from its k-NN
training QI pairs ({1st, 2nd, 3rd}-NN distances are
{15.05, 15.13, 15.17}, which are higher than the
corresponding distances averaged across all success
cases: {8.74, 9.23, 9.50.}), explaining the mistake.
Row2 shows an example where the model has seen
the same question in the training set (test QI pair is
semantically similar to training QI pairs) but, since it
has not seen “green cone” for training instances (an-
swers seen during training are different from what
needs to be produced for the test QI pair), it is unable
to answer the test QI pair correctly. This shows that
current models lack compositionality: the ability to
combine the concepts of “cone” and “green” (both
of which have been seen in training set) to answer
“green cone” for the test QI pair. This composition-
ality is desirable and central to intelligence.
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Question: How many oranges are on pedestals? How many zebras? What type of reception is being attended? What color are the safety cones?
Answer: 2 2 cake yellow

Fig. 3. Sample results of automatic question answering, from [3, 5].

3,000 possibilities; its accuracy of about 60%, while not perfect, is probably far above that of the average
person [30]. Figure 3 shows sample outputs from a system that can answer questions about photos [3, 5, 32],
which requires AI to solve multiple problems including understanding a question, recognizing photo content,
and producing a correct answer.
These examples all use machine learning, and thus depend on fitting mathematical models in millions of

images provided as training data. But because these models are not perfect and do not operate the same
way that people do, the results they produce can be perplexing or even nonsensical. The second row of
Figure 3, for example, shows visual questions that were incorrectly — and largely inexplicably — answered
by the algorithm. Figure 4 shows some examples [20] of pairs of images that look nearly identical but are
classified very differently by the computer: just like how some of the circle models would predict negative
circumferences despite fitting the training data, the model found here correctly classifies many images
but fails on images that are only slightly different. Unfortunately, these misclassifications mean that AI
systems can be easily fooled: pranksters could modify the appearance of road signs to make them invisible
to autonomous vehicles (Figure 5), for example.
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A. Appendix
Fig. 11 shows the original images corresponding to the experiment in Fig. 3. Fig. 12 visualizes the graph showing

relations between original and perturbed labels (see Section 3 for more details).

Bouvier des Flandres Christmas stocking Scottish deerhound ski mask

porcupine killer whale European fire salamander toyshop

fox squirrel pot Arabian camel coffeepot

Figure 11: Original images. The first two rows are randomly chosen images from the validation set, and the last row of
images are personal images taken from a mobile phone camera.
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wool Indian elephant Indian elephant African grey tabby African grey

common newt carousel grey fox macaw three-toed sloth macaw

Figure 3: Examples of perturbed images and their corresponding labels. The first 8 images belong to the ILSVRC 2012
validation set, and the last 4 are images taken by a mobile phone camera. See supp. material for the original images.

(a) CaffeNet (b) VGG-F (c) VGG-16

(d) VGG-19 (e) GoogLeNet (f) ResNet-152

Figure 4: Universal perturbations computed for different deep neural network architectures. Images generated with p =1,
⇠ = 10. The pixel values are scaled for visibility.

Visualization of the effect of universal perturbations.
To gain insights on the effect of universal perturbations on
natural images, we now visualize the distribution of labels
on the ImageNet validation set. Specifically, we build a di-
rected graph G = (V, E), whose vertices denote the labels,
and directed edges e = (i ! j) indicate that the majority
of images of class i are fooled into label j when applying
the universal perturbation. The existence of edges i ! j

therefore suggests that the preferred fooling label for im-
ages of class i is j. We construct this graph for GoogLeNet,
and visualize the full graph in the supp. material for space
constraints. The visualization of this graph shows a very pe-
culiar topology. In particular, the graph is a union of disjoint
components, where all edges in one component mostly con-
nect to one target label. See Fig. 7 for an illustration of two
connected components. This visualization clearly shows the
existence of several dominant labels, and that universal per-
turbations mostly make natural images classified with such

Fig. 4. Sample adversarial examples from [20]. The first row shows images and the object that the algorithm recognizes.
The second row shows the same images corrupted with noise that is nearly imperceptible, but nevertheless causes
the classifier to recognize the wrong object.

Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Distance/Angle Subtle Poster
Subtle Poster
Right Turn

Camouflage
Graffiti

Camouflage Art
(LISA-CNN)

Camouflage Art
(GTSRB-CNN)

5’ 0�

5’ 15�

10’ 0�

10’ 30�

40’ 0�

Targeted-Attack Success 100% 73.33% 66.67% 100% 80%

Table 2: Targeted physical perturbation experiment results on LISA-CNN using a poster-printed Stop sign (subtle attacks) and
a real Stop sign (camouflage graffiti attacks, camouflage art attacks). For each image, the top two labels and their associated
confidence values are shown. The misclassification target was Speed Limit 45. See Table 1 for example images of each attack.
Legend: SL45 = Speed Limit 45, STP = Stop, YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane Ends.

Distance & Angle Poster-Printing Sticker

Subtle Camouflage–Graffiti Camouflage–Art

5’ 0� SL45 (0.86) ADL (0.03) STP (0.40) SL45 (0.27) SL45 (0.64) LE (0.11)
5’ 15� SL45 (0.86) ADL (0.02) STP (0.40) YLD (0.26) SL45 (0.39) STP (0.30)
5’ 30� SL45 (0.57) STP (0.18) SL45 (0.25) SA (0.18) SL45 (0.43) STP (0.29)
5’ 45� SL45 (0.80) STP (0.09) YLD (0.21) STP (0.20) SL45 (0.37) STP (0.31)
5’ 60� SL45 (0.61) STP (0.19) STP (0.39) YLD (0.19) SL45 (0.53) STP (0.16)

10’ 0� SL45 (0.86) ADL (0.02) SL45 (0.48) STP (0.23) SL45 (0.77) LE (0.04)
10’ 15� SL45 (0.90) STP (0.02) SL45 (0.58) STP (0.21) SL45 (0.71) STP (0.08)
10’ 30� SL45 (0.93) STP (0.01) STP (0.34) SL45 (0.26) SL45 (0.47) STP (0.30)

15’ 0� SL45 (0.81) LE (0.05) SL45 (0.54) STP (0.22) SL45 (0.79) STP (0.05)
15’ 15� SL45 (0.92) ADL (0.01) SL45 (0.67) STP (0.15) SL45 (0.79) STP (0.06)

20’ 0� SL45 (0.83) ADL (0.03) SL45 (0.62) STP (0.18) SL45 (0.68) STP (0.12)
20’ 15� SL45 (0.88) STP (0.02) SL45 (0.70) STP (0.08) SL45 (0.67) STP (0.11)

25’ 0� SL45 (0.76) STP (0.04) SL45 (0.58) STP (0.17) SL45 (0.67) STP (0.08)
30’ 0� SL45 (0.71) STP (0.07) SL45 (0.60) STP (0.19) SL45 (0.76) STP (0.10)
40’ 0� SL45 (0.78) LE (0.04) SL45 (0.54) STP (0.21) SL45 (0.68) STP (0.14)

Fig. 5. Graffiti patterns that confuse an autonomous car’s sign classification system, causing it to recognize the
wrong type of sign, from [12].

5 WHEN DOES AI WORKWELL?

Given its imperfections and limitations, deploying AI in the real world must be done carefully. AI works
well in applications with very large amounts of high-quality data, and in applications that are resilient
to potential errors, typically because (1) a human is “in the loop” to double-check the AI’s decisions and
intervene if needed, (2) the context or environment is constrained, and/or (3) the consequences of failure
are minimal. Board games like Go are perfect for AI because large training datasets are available (the
computer can generate many games by just playing against itself), consequences of failure are low, and
the environment is constrained by the rules of the game. Autonomous driving, on the other hand, is much
more difficult, which explains why many companies are targeting limited scenarios such as requiring a
human to have their hands on the wheel to override the system if needed, or working only in controlled
scenarios such as Interstate highways.
While computers cannot yet surpass human intelligence, they can outperform humans in sheer speed of

calculations and ability to search vast amounts of information. They can also be programmed to perform
the same task over and over again, impartially and without fatigue. These properties enable new capabilities
that would simply not be possible for humans to do alone. For example, AI technology can be used to
communicate with hundreds or even thousands of sensors and other devices at a time, collecting data and
making decisions in real-time. Such a network of small devices, or “Internet of Things,” can range in scale
from dozens of sensors in an automobile, to thousands of sensors in a manufacturing plant, to millions of
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senors in consumer products scattered around the world. These sensors can be collecting many different
types of information — video, audio, sensor readings, text, etc. Meanwhile, computers’ objective and fast
calculations let them quickly make quantifications that would not be possible by a human. For example,
instead of simply predicting that an important piece of equiment may soon fail based on sensor readings
and other data, AI algorithms could predict the probability of failure, and compare the expected cost of
repairing it once it fails versus the downtime cost of taking it off-line for predictive maintenance.

6 HOW CAN AI BE APPLIED IN MANUFACTURING?

Many manufacturing applications are well suited to these advantages of AI. For example:

• Quality inspection: In the restricted environment of a manufacturing plant, computer vision can
perform many inspection tasks more quickly, accurately, and efficiently than a human. For example,
an aircraft engine manufacturer recently began applying computer vision to inspect turbofan blades
in 3d with micrometer precision [9]. The system checks several hundred properties of a blade in just
15 seconds, which has allowed the manufacturer to inspect every blade it manufactures instead of
just a random sample. Moreover, the system applies a consistent standard, eliminating variations
across different human inspectors. Automated inspection may also significantly improve efficiency
of consumer product manufacturing: an automated system adopted by a hot sauce maker checks
the placement of labels at a rate of over 1,000 per minute [10]. Many of these systems are custom-
designed for one particular inspection task and (unlike a human) are unable to be easily retrained.
Machine learning-based approaches may change this; machine learning pioneer Andrew Ng recently
announced landing.ai, a start-up which promises more flexible inspection systems.
• Optimizing supply chains: AI can be used to collect and monitor fine-grained data along the
supply chain, and then manage inventory, predict future demand, spot inefficiencies, etc. For example,
Walmart is testing indoor drones to monitor its warehouse inventories [2]. It also uses machine
learning to forecast product demand based on local weather, for example, and has discovered subtle
patterns that may not have occurred to a human forecaster (e.g., that steaks sell better than ground
beef when it is cloudy and windy) [21]. The algorithms are not able to explainwhy these patterns occur,
or even if they are reliable patterns or simply coincidences, but this is acceptable in this application:
the consequences of a few incorrect predictions are minor as long as the system improves efficiency
overall. (This is unlike, say, autonomous weapons where explaining why the system chose a particular
target would be crucial.)
• Fine-grained equipment monitoring and predictive maintenance: AI can monitor manufactur-
ing equipment at a very fine grain through hundreds of networked sensors, picking up on subtle
changes — e.g. greater than usual vibration, or slight changes in machine noise — that may indicate
impending failure. Mueller Industries, a manufacturer of industrial products, is testing such a system,
and already identified a problem with bearings on one of its machines that could have caused sig-
nificant downtime if it had not been discovered and repaired [8]. This technology has the potential
to move from “preventative maintenance” to “predictive maintenance,” avoiding machine downtime
both from machine failure and unnecessary preventative maintenance.
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• Advanced robotics: Robots have long been used in manufacturing, but typically must be custom-
built for one particular task, cannot be easily “retrained,” and are typically blind to their surroudings,
simply performing the same task over and over regardless of what (or who) might be in the way.
New technology is starting to allow robots to perceive human activities and safely collaborate with
them [18]. Other research is investigating robots that can automatically learn by imitating human
actions — which could dramatically reduce development costs — or that can learn on their own by
simply “practicing” a task over and over again until they succeed [13]. Most of this work is still in the
proof-of-concept stage, but the technology is advancing quickly.
• Generative design:AI can be used to simulate how a design would perform in the real world, without
physically building it, and then automatically “evolve” modifications until an optimal design is reached.
As just one example, Airbus reportedly used generative techniques to create aircraft parts that are
significantly lighter than those designed by humans [4].
• Augmenting human capabilities: Collaborating humans and AI can potentially perform better and
more efficiently than either individually. For example, Augmented Reality (AR) can enhance efficiency
by showing workers important information as they perform a task, and allowing them to see views
that would not otherwise be possible (e.g., infrared imaging to see in low light). One study reported a
34% improvement in productivity for a worker performing a wiring task when AR glasses were used
to guide the process [6].
• Transportation: Autonomous vehicles have the potential to revolutionize the world’s transportation
systems eventually, but numerous technical, social, legal, and ethical problems remain before they
will likely see widespread consumer use [17]. But autonomous vehicles in more restricted settings,
such as manufacturing floors, are already being deployed. Amazon reportedly uses tens of thousands
of robots to automatically move products in its warehouses [25], for example. And autonomous
long-haul trucking may arrive much sooner than autonomous consumer vehicles, since navigating the
restricted setting of Interstate highways is significantly easier than handling all possible roadways [24].
Semi-autonomous trucks with assistive safety features are already becoming commonplace.

7 WHAT IS THE ROAD AHEAD?

Although AI can outdo humans on some very specific tasks, humans still dramatically outperform in
practically all real-world tasks requiring intelligence [23]. Moreover, machine learning algorithms require
huge training sets, whereas humans can learn with very limited experience. Finally, while humans can offer
reasoning to support their conclusions, machine learning is a “black box” that typically cannot explain or
defend its answers. It may just be a matter of time before these limitations are solved, or they may be more
fundamental. Some believe that human learning is nothing more than a sophisticated version of model
fitting [1], while others believe that current AI techniques are inherently “wrong” and could never mimic
the complex reasoning that people do [16, 22, 31]. Regardless, AI is advancing rapidly, having achieved
milestones that seemed unreachable even a few years ago. Current AI technology can already be usefully
applied in many applications, particularly in the manufacturing sector, where data is copious, operating
environments are restricted, and trained humans can oversee the automatic systems.
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Beyond the technical challenges, AI also raises important legal, ethical, and public policy questions.
AI will have to make potentially life-or-death decisions — how should a self-driving car choose between
crashing itself and potentially killing its passengers, versus striking a child who has run into the road? To
what extent should the algorithms that make such choices be subject to government oversight? How do we
assign liability for when AI makes mistakes? How do we safeguard AI systems, to protect both the data
they collect and decisions they make from hackers and other adversaries? In general, what protections are
needed, if any, to ensure that AI does more good than harm?
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